Operaciones lógicas

Negación (¬)

La negación es similar a la función complemento en la teoría de conjuntos.

Definición

La negación de una proposición es verdadera si la proposición es falsa, y viceversa.

Palabras conectivas

Las siguientes palabras indican negación: no, nunca, jamás, no es cierto que, no es verdad que, es falso que, etc.

Tabla de verdad

Conjunción (^)

La conjunción es similar a la función intersección en la teoría de conjuntos.

Definición

La conjunción de 2 proposiciones es verdadera si las 2 proposiciones son verdaderas; y es falsa en cualquier otro caso.

Palabras conectivas

Las siguientes palabras indican conjunción: y, pero, sin embargo, además, aunque, etc.

Tabla de verdad

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Disyunción (V)

La disyunción es similar a la función unión en la teoría de conjuntos.

Definición

La disyunción de 2 proposiciones es falsa si las 2 proposiciones son falsas; y es verdadera en cualquier otro caso.

Palabras conectivas

Las siguientes palabras indican disyunción: o, y/o.

Tabla de verdad

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

Condicional (\rightarrow)

Sean p y q cualquier proposición.

Definición

En la condicional, $\mathbf{p} \rightarrow \mathbf{q}$, "p" se denomina **antecedente** y "q" **consecuente**. La condicional, $\mathbf{p} \rightarrow \mathbf{q}$, es únicamente falsa si el antecedente es verdadero y el consecuente es falso; y es verdadera en cualquier otro caso. $\mathbf{V} \rightarrow \mathbf{F} = \mathbf{F}$

Palabras conectivas

Las siguientes palabras indican condicional:

- Si p entonces q
- q si p
- **Si** p, q

Tabla de verdad

Bicondicional (↔)

Sean p y q cualquier proposición.

Definición

La bicondicional, $\mathbf{p} \leftrightarrow \mathbf{q}$, es verdadera si p y q tienen el mismo valor de verdad; y es falsa en cualquier otro caso.

Palabras conectivas

Las siguientes palabras indican bicondicional: si y solo si

Tabla de verdad

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Resumen

Ejemplos

- 1. Realizar la tabla de verdad de las siguientes proposiciones:
 - I. (¬p) ∧ q
 - II. $\neg(p \land q)$
 - III. $((p \leftrightarrow r) \land (\neg r)) \rightarrow ((\neg q) \lor (\neg p))$
 - IV. $p \rightarrow (\neg q \lor \neg p)$

Solución:

I. (¬p) ∧ q, son 2 proposiciones simples distintas, entonces son 4 filas.

p V	q	¬р	(¬p) ∧ q
V	V	F	F
٧	F	F	F F
F	V	V	V
F	F	V	F

II. ¬(p ∧ q), son 2 proposiciones distintas,entonces son 4 filas.

III. $((p \leftrightarrow r) \land (\neg r)) \rightarrow ((\neg q) \lor (\neg p))$, son 3 proposiciones distintas, entonces son 8 filas.

р	q	r	¬р	¬q	$\neg \mathbf{r}$	$\boldsymbol{p} \leftrightarrow \boldsymbol{r}$	(p ↔ r)^ (¬r)	(qr) v (pr)	$((p \leftrightarrow r) \land (\neg r)) \rightarrow ((\neg q) \lor (\neg p))$
						V	F	F	<mark>V</mark>
V	V	F	F	F	٧	F	F	F	<mark>V</mark>
V	F	V	F	٧	F	V	F	V	<mark>V</mark>
٧	F	F	F	٧	٧	F	F	V	<mark>∨</mark>
F	٧	٧	٧	F	F	F	F	V	<mark>∨</mark>
F	٧	F	٧	F	٧	V	V	V	<mark>∨</mark>
F	F	V	V	٧	F	F	F	V	<mark>V</mark>
F	F	F	V	V	V	V	V	V	<mark>∨</mark>

IV. p \rightarrow ((¬q) \lor (¬p)), son 2 proposiciones distintas, entonces son 8 filas.

р	q	¬р	¬q	(qr)v(pr)	p →((¬q) ∨ (¬p))
٧	V	F	F	F	<mark>F</mark>
٧	F	F	V	V	V
F	٧	V	F	V	<mark>V</mark>
F	F	V	V	V	V